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Abstract: The notion of probability plays a crucial role in quantum mechanics. It appears in
quantum mechanics as the Born rule. In modern mathematics which describes quantum mechanics,
however, probability theory means nothing other than measure theory, and therefore any operational
characterization of the notion of probability is still missing in quantum mechanics. We present an
alternative rule to the Born rule based on the toolkit of algorithmic randomness by specifying the
property of the results of quantum measurements in an operational way. Algorithmic randomness is a
field of mathematics which enables us to consider the randomness of an individual infinite sequence.
We then present an alternative rule to the Born rule for mixed states based on algorithmic randomness.
In particular, we give a precise definition for the notion of mixed state. We then show that all of the
alternative rules for both pure states and mixed states can be derived from a single postulate, called
the principle of typicality, in a unified manner. We do this from the point of view of the many-worlds
interpretation of quantum mechanics. Finally, we make an application of our framework to the BB84
quantum key distribution protocol in order to demonstrate how properly our framework works in a
practical problem.
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1 Introduction

The notion of probability plays a crucial role in quan-
tum mechanics. It appears in quantum mechanics as
the so-called Born rule, i.e., the probability interpre-
tation of the wave function. In modern mathematics
which describes quantum mechanics, however, proba-
bility theory means nothing other than measure the-
ory, and therefore any operational characterization of
the notion of probability is still missing in quantum
mechanics. In this sense, the current form of quantum
mechanics is considered to be imperfect as a physical
theory which must stand on operational means.

In a series of works [10, 11, 12], we presented an op-
erational characterization of the notion of probability,
based on the toolkit of algorithmic randomness. Algo-
rithmic randomness, also known as algorithmic infor-
mation theory, is a field of mathematics which enables
us to consider the randomness of an individual infinite
sequence. We used the notion of Martin-Léf random-
ness with respect to Bernoulli measure to present the
operational characterization of the notion of probabil-
ity. We gave natural and equivalent operational char-
acterizations of the basic notions of probability theory,
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such as the notions of conditional probability and the
independence of events/random variables, in terms of
the notion of Martin-Lof randomness with respect to
Bernoulli measure. We then made applications of our
framework [10, 11, 12] to information theory and cryp-
tography as examples of the fields for the applications,
in order to demonstrate the wide applicability of our
framework to the general areas of science and technol-
ogy.

In this paper, as a major application of our frame-
work [10, 11, 12] to basic science, we present an alterna-
tive rule to the Born rule based on our operational char-
acterization of the notion of probability for the purpose
of making quantum mechanics perfect. Namely, we use
the notion of Martin-Lof randomness with respect to
Bernoulli measure to state the alternative rule to the
Born rule for specifying the property of the results of
quantum measurements in an operational way.

As the first step of the research of this line, in the
paper we only consider, for simplicity, the case of finite-
dimensional quantum systems and measurements over
them. Note, however, that such a case is typical in
quantum information and quantum computation.

2 Mathematical Preliminaries

2.1 Basic Notation and Definitions
We start with some notation about numbers and
strings which will be used in this paper.
N=1{0,1,2,3,...} is the set of natural numbers, and



NT is the set of positive integers. R is the set of reals,
and C is the set of complex numbers.

An alphabet is a non-empty finite set. Let 2 be an
arbitrary alphabet throughout the rest of this section.
A finite string over () is a finite sequence of elements
from the alphabet 2. We use Q* to denote the set of all
finite strings over €2, which contains the empty string
denoted by A. For any o € Q*, |o] is the length of o.
Therefore |A| = 0. For any n € N, we use Q" to denote
the set {z | x € Q* & || = n}. A subset S of Q* is
called prefiz-free if no string in .S is a prefix of another
string in S.

An infinite sequence over £ is an infinite sequence
of elements from the alphabet €2, where the sequence
is infinite to the right but finite to the left. We use
Q> to denote the set of all infinite sequences over ).
Let a € Q°°. For any n € N, we denote by af,€ Q*
the first n elements in the infinite sequence a. For any
S C QO the set {o € Q| 3In € Naf,€ S} is denoted
by [S]~. For any ¢ € Q*, we denote by [0]™ the set

[{o}™.

2.2 Measure Theory

We briefly review measure theory according to Nies [8,
Section 1.9].

A real-valued function p defined on the class of all
subsets of Q2 is called an outer measure on Q2 if the
following conditions hold: (i) p (@) = 0; (ii) p(C) <
w (D) for every subsets C and D of Q> with C C D; (iii)
p(U; Ci) <3, 1 (Cy) for every sequence {C; }ien of sub-
sets of Q2°°. A probability measure representation over
Y is a function r: Q* — [0, 1] such that (i) () = 1 and
(ii) for every o € * it holds that (o) = >, .qr(0a).
A probability measure representation r over € induces
an outer measure g, on 2°° in the following manner: A
subset R of Q% is open if R = [S]™ for some S C Q*.
Let 7 be an arbitrary probability measure represen-
tation over ). For each open subset A of Q°°, we
define p,.(A) by p.(A) := > cpr(o), where E is a
prefix-free subset of Q* with [E]® = A. Note that
the sum is independent of the choice of the prefix-free
set E and therefore the value u,(A) is well-defined.
Then, for any subset C of Q°°, we define pu,(C) as
inf{p,(A) | C C A & Ais an open subset of Q>}. We
can then show that u, is an outer measure on Q°° such
that u,(2%°) = 1.

A class F of subsets of Q2 is called a o-field on Q>
if F includes Q°°, is closed under complements, and is
closed under the formation of countable unions. The
Borel class Bq is the o-field generated by all open sets
on 2. Namely, Bq is defined as the intersection of
all the o-fields on 2°° containing all open sets on 2°°.
A real-valued function p defined on the Borel class Bq
is called a probability measure on Q°° if the following
conditions hold: (i) (@) = 0 and u(Q°) = 1; (ii)
pw(U; Di) = >, 10 (D) for every sequence {D;}ien of
sets in Bq such that D; N D; = @ for all 4 # j. Then,
for every probability measure representation r over {2,
we can show that the restriction of the outer measure

- on 2°° to the Borel class Bg is a probability measure
on 2. We denote the restriction of u, to Bg by u,
just the same.

Then it is easy to see that y, ([0]~) = (o) for every
probability measure representation r over ) and every
o€ Q*.

3 Postulates of Quantum Mechanics

In this section, we recall the central postulates of
quantum mechanics. For simplicity, in this paper we
consider the postulates of quantum mechanics for a
finite-dimensional quantum system, i.e., a quantum
system whose state space is a finite-dimensional Hilbert
space. See e.g. Nielsen and Chuang [7, Section 2] for
the detail of the postulates of quantum mechanics, in
particular, in the finite-dimensional case. We refer to
the postulates from it. Note that these postulates are
about pure states. We will consider the postulates of
quantum mechanics about mixed states and their re-
finements later.

The first postulate of quantum mechanics is about
state space and state vector.

Postulate 1 (State space and state vector). Associ-
ated to any isolated physical system is a complex vector
space with inner product (i.e., Hilbert space) known as
the state space of the system. The system is completely
described by its state vector, which s a unit vector in
the system’s state space. O

The second postulate of quantum mechanics is about
the composition of systems.

Postulate 2 (Composition of systems). The state space
of a composite physical system is the tensor product
of the state spaces of the component physical systems.
Moreover, if we have systems numbered 1 through n,
and system number i is represented in the state |V;),
then the joint state of the total system is |¥1) ® |¥s) @
R [W,). O

The third postulate of quantum mechanics is about
the time-evolution of closed quantum systems.

Postulate 3 (Unitary time-evolution). The evolution
of a closed quantum system is described by a unitary
transformation. Namely, the state |U1) of the system at
time t1 is related to the state |U3) of the system at time
ty by a unitary operator U, which depends only on the
times t1 and t2, in such a way that |Us) =U|¥y). O

The forth postulate of quantum mechanics is about
measurements on quantum systems. This is the so-
called Born rule, i.e, the probability interpretation of
the wave function.

Postulate 4 (The Born rule). Quantum measurement
is described by an observable, M, a Hermitian operator
on the state space of the system being measured. The
observable has a spectral decomposition M = mE,,,
where E,, is the projector onto the eigenspace of M



with eigenvalue m. The possible outcomes of the mea-
surement correspond to the eigenvalues, m, of the ob-
servable. If the state of the quantum system is | V) im-
mediately before the measurement then the probability
that result m occurs is given by (¥|E,,,| V), and the state
of the system after the measurement is

Ep|¥)

VIUE,[P)

Thus, the Born rule, Postulate 4, uses the notion of
probability. However, the operational characterization
of the notion of probability is not given in the Born
rule, and therefore the relation of its statement to a
specific infinite sequence of outcomes of quantum mea-
surements which are being generated by an infinitely
repeated measurements is unclear. In this paper we fix
this point.

We keep Postulates 1, 2, and 3 in their original forms
without any modifications in this paper. We propose
Postulate 5 below as a refinement of Postulate 4 based
on the notion of Martin-Lof P-randomness.

O

4 Martin-Lof P-Randomness

In this section we introduce the notion of Martin-Lof
randommness with respect to Bernoulli measure, which is
called the Martin-Lof P-randomness in this paper. We
first review the notions of finite probability space and
Bernoulli measure. Both of them are from measure
theory.

Definition 1 (Finite probability space). Let Q be an
alphabet. A finite probability space on Q is a function
P:Q — [0,1] such that (i) P(a) > 0 for every a € €,
and (i) Y ,cq P(a) = 1. The set of all finite probability
spaces on §) is denoted by P(Q). O

Let P € P(Q). For each o € Q*, we use P(0) to de-
note P(o1)P(02) ... P(oy,) where 0 = 0103...0, with
o; € Q. For each subset S of Q*, we use P(S) to denote
>, s Plo)

Consider a function r: Q* — [0, 1] such that r(o) =
P(0) for every o € Q*. It is then easy to see that the
function r is a probability measure representation over
Q. The probability measure u, induced by 7 is called a
Bernoulli measure on €1°°, denoted A\p. The Bernoulli
measure Ap on Q* satisfies that \p ([0]~) = P(o) for
every o € 0%,

Martin-Lof P-randomness is defined as follows. This
notion was, in essence, introduced by Martin-Lof [6],
as well as the notion of Martin-Lof randomness.

Definition 2 (Martin-Léf P-randomness). Let P €
P(Q2). A subset C of NT x Q* is called a Martin-Lof
P-test if C is a recursively enumerable set such that for
every n € Nt it holds that Ap ([Cn]™) < 27" where
Cn:={0o|(no)eC}.

For any a € Q°, we say that a is Martin-Lof P-
random if for every Martin-Lof P-test C there exists
n € Nt such that o ¢ [C,]~. 0O

In the case where Q = {0,1} and P satisfies that
P(0) = P(1) = 1/2, Bernoulli measure Ap results in
Lebesgue measure on {0, 1}°°. In this case, the Martin-
Lof P-randomness results in the Martin-Lof random-
ness.

5 A Refinement of the Born Rule

Let 2 be an alphabet consisting of reals. Suppose
that € is the set of all possible measurement outcomes
in a quantum measurement. Let us identify the form
of the postulate of quantum measurements as it ought
to be, from a general point of view. Consider an infi-
nite sequence « of the outcomes of quantum measure-
ments such as a = ajasas...... with a; € , which
is being generated as measurements progressed. All
that the experimenter of quantum measurements can
obtain through the measurements about quantum sys-
tem is such a specific infinite sequence of outcomes in §2
of the measurements which are being generated by in-
finitely repeated measurements. Thus, the object about
which the postulate of quantum measurements makes a
statement should be the properties of a specific infinite
sequence o € Q% of outcomes of the measurements.

Suggested by this consideration, we propose to re-
place the Born rule, Postulate 4, by the following pos-
tulate:

Postulate 5 (Refinement of the Born rule for pure
states). Quantum measurement is described by an ob-
servable, M, a Hermitian operator on the state space
of the system being measured. The observable has a
spectral decomposition

M= mE,
med

, where E,, is the projector onto the eigenspace of M
with eigenvalue m. The set of possible outcomes of the
measurement is the spectrum € of M. Suppose that
the measurements are repeatedly performed over iden-
tical quantum systems whose states are all |V), and the
infinite sequence a € Q°° of measurement outcomes
is being generated. Then « is Martin-Léf P-random,
where P is a finite probability space on € such that
P(m) = (V|E,,|¥) for every m € Q. For each of the
measurements, the state of the system immediately af-
ter the measurement is

En|¥)

V{V[EL[T)
where m s the corresponding measurement outcome.

O

Based on the results of the works [10, 11, 12], we
can see that Postulate 5 is certainly a refinement of the
Born rule, Postulate 4, from the point of view of our
intuitive understanding of the notion of probability.

First, according to Postulate 5 we can show that
the law of large numbers, i.e., the frequency interpreta-
tion, holds for the infinite sequence o € 2°° in Postu-
late 5. This is confirmed by the following theorem. See
Tadaki [12, Section 5] for the proof.

(1)



Theorem 3 (The law of large numbers). Let Q be an
alphabet, and let P € P(2). For every a € Q, if a
is Martin-Léf P-random then for every a € § it holds
that lim,, oo No(aln)/n = P(a), where No(o) denotes
the number of the occurrences of a in o for every a € §)
and o € Q*. O

Secondly, according to Postulate 5 we can show that
an elementary event with probability one always oc-
curs in the infinite sequence @ € Q*° in Postulate 5.
This fact that an elementary event with probability one
occurs certainly in quantum mechanics is derived as
follows.

Recall that there is a postulate about quantum mea-
surements with no reference to the notion of probabil-
ity. This is given in Dirac [3, Section 10], and describes
a spacial case of quantum measurements which are per-
formed upon a quantum system in an eigenstate of an
observable, i.e., a state represented by an eigenvector
of an observable.

Postulate 6 (Dirac [3]). If the dynamical system is
in an eigenstate of a real dynamical variable &, belong-
ing to the eigenvalue &', then a measurement of & will
certainly gives as result the number &'. O

Here, the “dynamical system” means quantum sys-
tem, and the “real dynamical variable” means observ-
able.

Based on Postulates 1, 4, and 6 above, we can show
that an elementary event “with probability one” oc-
curs certainly in quantum mechanics. To see this, let
us consider a quantum system with finite-dimensional
state space, and a measurement described by an observ-
able M performed upon the system. Suppose that the
probability of getting result mg is one in the measure-
ment performed upon the system in a state represented
by a state vector |¥). Let M =) mE,, be a spectral
decomposition of the observable M, where F,, is the
projector onto the eigenspace of M with eigenvalue m.
Then, it follows from Postulate 4 that (V|E,,, |¥) = 1.
This implies that |¥) is an eigenvector of M belonging
to the eigenvalue myg, since |¥) is a unit vector. Thus,
we have that immediately before the measurement, the
quantum system is in an eigenstate of the observable
M, belonging to the eigenvalue mg. It follows from
Postulate 6 that the measurement of M will certainly
gives as result the number mgy. Hence, it turns out
that an elementary event with probability one occurs
certainly in quantum mechanics.

Theorem 4 below confirms that an event with proba-
bility one always occurs in the infinite sequence a € Q>
in Postulate 5. This result strengthens the validity of
Postulate 5. Theorem 4 was, in essence, pointed out
by Martin-Lof [6]. See Tadaki [12, Section 5] for the
proof.

Theorem 4. Let P € P(2), and let a € Q. Suppose
that v is Martin-Lof P-random and P(a) = 1. Then «
consists only of a, i.e., a« = aaaaaq....... O

Thirdly, we can verify the self-consistency of Postu-
late 5 on some level, based on the arguments given in
Tadaki [12, Sections 5.3 and 5.4]. This suggests that
Postulate 5 is not too strong.

Postulate 5 is based on the notion of Martin-Lof P-
randomness. In general, we can use this notion to
present an operational characterization of the motion
of probability, and we can reformulate probability the-
ory based on the notion of Martin-L6f P-randomness.
For example, we can represent the notion of condi-
tional probability and the notion of the independence
of events/random wvariables in terms of Martin-Lof P-
randomness. Thus, Martin-Lof P-randomness is thought
to reflect all the properties of the notion of probability
from our intuitive understanding of the notion of prob-
ability. Hence, Postulate 5, which uses the notion of
Martin-Lof P-randomness, is thought to be a rigorous
reformulation of Postulate 4. The detail of the opera-
tional characterization was reported in [10, 11, 12].

We will later show that Postulate 5 can be derived
from a postulate, called the principle of typicality, to-
gether with Postulates 1, 2, and 3.

6 Mixed States

Postulate 4 above is the Born rule for pure states.
Recall that the Born rule for mixed states is given as
follows.

Postulate 7 (The Born rule for mixed states). Quan-
tum measurement is described by an observable, M,
a Hermitian operator on the state space of the system
being measured. The observable has a spectral decompo-
sition M =" mkE,,, where E,, is the projector onto
the eigenspace of M with eigenvalue m. The possible
outcomes of the measurement correspond to the eigen-
values, m, of the observable. If the state of the quantum
system is represented by a density matriz p immediately
before the measurement then the probability that result
m occurs is given by tr(E,,p), and the state of the sys-
tem after the measurement is E,pEp /tr(Eyp). O

We propose a refinement of Postulate 7 by algorith-
mic randomness in what follows. First, note that ac-
cording to Postulate 5, the result of the quantum mea-
surements forms a Martin-Lof P-random infinite se-
quence of pure states, each of which is of the form (1).
On the other hand, in the conventional quantum me-
chanics this measurement result is described as a mixed
state. Suggested by these facts, we propose a math-
ematical definition of the notion of a mixed state in
terms of Martin-Lof P-randomness, as follows.

Definition 5 (Mixed state and its density matrix).
Let S be a quantum system with state space H of finite
dimension. Let € be a non-empty finite set of state
vectors in H, and let a € Q. We say that « is a
mixed state of S if there exists a finite probability space
P on Q such that o is a Martin-Lof P-random. The
density matrix p of the mized state « is defined by

pi= Y P(0)¥)(Y,

[Py en



where P is a finite probability space on 0 for which «
is Martin-Lof P-random. O

Note that the definition of density matrix given in
Definition 5 is the same as in the conventional quan-
tum mechanics. Using this rigorous definition of mixed
state, we propose to replace the Born rule for mixed
states, Postulate 7, by the following rule of an opera-
tional form based on Martin-L6f P-randomness.

Postulate 8 (Refinement of the Born rule for mixed
states). Quantum measurement is described by an ob-
servable, M, a Hermitian operator on the state space
of the system being measured. The observable has a
spectral decomposition M =3 mE,,, where Ey, is
the projector onto the eigenspace of M with eigenvalue
m. The set of possible outcomes of the measurement
is the spectrum Q of M. Suppose that the measure-
ments are repeatedly performed over a mized state with
a density matriz p. Then the infinite sequence of out-
comes generated by the measurements is a Martin-Lof
P-random infinite sequence over 2, where P is a finite
probability space on Q such that P(m) = tr(E,p) for
every m € . Moreover, the resulting sequence of pure
states with outcome m is a mized state with the density
matric By, pEny [ tr(Epp). O

7 The Many-Worlds Interpretation of
Quantum Mechanics

In what follows, we consider the validity of our new
rules, Postulates 5 and 8, from the point of view of
the many-worlds interpretation of quantum mechanics
(MWI, for short) introduced by Everett [5] in 1957.
More specifically, we derive Postulates 5 and 8 based
on a refinement of the arguments in MWI, called the
principle of typicality.

To begin with, we review the framework of MWTI.
MWT is more than just an interpretation of quantum
mechanics. It aims to derive Postulate 4 from the re-
maining postulates, Postulates 1, 2, and 3. In this
sense, Everett [5] proposed MWI as a “metatheory”
of quantum mechanics. The point is that in MWTI the
measurement process is fully treated as the interaction
between a system and an apparatus, based only on Pos-
tulates 1, 2, and 3. Then MWI tries to derive Postu-
late 4 in such a setting.

Let us investigate the setting of MWI in terms of
our terminology. According to Postulates 1, 2, and
3, we consider the following unitary operator U which
describes the interaction between a system and an ap-
paratus as measurement process:

Ulm) ® |9™") = |m) ® |@[m]). (2)

Here, |m) is an eigenstate of an observable of the sys-
tem where {|m)} forms an orthonormal basis of the
state space of the system.! The vector |®™"*) is the ini-
tial state of the apparatus, and |®[m]) is the final state

1 For simplicity, we here consider the case where the measured
observable has no degeneracy. An extension of the general case
with degeneracy is obvious.

of the apparatus with (®[m]|®[m']) = 6y m. By this
interaction, a correlation (i.e., entanglement) is gener-
ated between the system and the apparatus. The state
|®[m]) indicates that the apparatus records the value m
of the observable of the system.

Actually, we consider an infinite repetition of mea-
surements of an identical observable over identical sys-
tems prepared in an identical state, each of which is
described by the unitary time-evolution (2). As mea-
surements progressed, correlations between the systems
and the apparatus are being generated in sequence in
the superposition of the total system consisting of the
systems and the apparatus. The detail is described as
follows.

For simplicity, we here consider the measurements
over qubit systems. Let |0) and |1) be an orthonormal
basis of the state space of a qubit system. We prepare
countably infinite qubit systems in an identical state
|¥) := C(0)|0) + C(1)|1) with C(k) € C and perform
measurements of the observable |1)(1] over these qubit
systems one by one by interacting an apparatus with
these qubit systems one by one. Let H,, be the state
space of the total system consisting of the first n qubit
systems and the apparatus. The successive interaction
between the qubit systems and the apparatus as mea-
surement process proceeds in the following manner.

The initial state of the total system, which consists
of the first qubit system and the apparatus, is |¥) ®
|®it) € H;. Immediately after the measurement of
the first qubit system, the total system results in the
state ), o1 Cla1)]a1) ® |®[a1]) € Hy by the interac-
tion (2) as measurement process. In general, immedi-
ately before the measurement of the nth qubit system,
the state of the total system, which consists of the first
n qubit systems and the apparatus, is

Y. Cla)-Clan-1)|ar) ® - ® lap-1) @ |T)

al,...,an,lzo,l
®|®ar ... an_1]) ® |

in H,, where |®[a;...a,_1]) denotes |P[a1]) @ -+ @
|®[an—1]). Immediately after the measurement of the
nth qubit system, the total system results in the state

Y Clar)---Clan) ) ® - @ an)
ay,...,an=0,1 (3)

® |Play ... ay])

by the interaction (2) between the nth qubit system in
the state |¥) and the apparatus in the state |®™) as
measurement process. The state |®[a; ... a,]) indicates
that the apparatus records the values ai...a, of the
observables |1)(1| of the first n qubit systems.

In the above description, on letting n — oo, a world
is defined as the infinite sequence of records of the val-
ues of the observable in the apparatus. Thus, the finite
records aj ...a, in each state |®[a;...a,]) in the su-
perposition (3) of the total system is a prefix of a world.
Each world is an infinite binary sequence in this case
of the total system consisting of the qubit systems and
the apparatus.



Then, for aiming at deriving Postulate 4, MWI as-
signs “weight” to each of worlds. Namely, it introduces
measure on the set of all worlds in the following man-
ner. First, MWI introduces a probability measure rep-
resentation on the set of prefixes of worlds, i.e., the set
{0,1}* in this case. This probability measure represen-
tation is given by a function r: {0,1}* — [0,1] with
r(ay...an) = |C(a1)---C(ay)|?, which is the square
of the norm of each state C(a1)---Cl(ay)|a1) @ - ®
|an) ® |®la; ...ay]) in the superposition (3). We can
easily check that r is certainly a probability measure
representation. The measure induced by the proba-
bility measure representation r is just the Bernoulli
measure Ap on {0,1}°°, where P is a finite probabil-
ity space on {0,1} such that P(a) = |C(a)|* for every
a € {0,1}.

Let R C {0,1}° be a “typical” property with re-
spect to the Bernoulli measure Ap. Namely, let R be
a Borel subset of {0,1}*, i.e., R € B{g,1}, such that
Ap (R) = 1. For example, we can consider as R the
set of worlds for which the frequency interpretation,
i.e., the law of large numbers, holds. By definition, the
property R holds in “almost all” worlds. Based on this
arguments, MWI insists that Postulate 4 has been de-
rived from Postulates 1, 2, and 3. In this argument
by Everett [5], however, what is typical is just a set R
of worlds and not an individual world. The problem
here is whether our world is in R, or not. The argu-
ment by Everett is unclear in this regard. Moreover, as
we already pointed out, there is no operational char-
acterization of the notion of probability in Postulate 4
while it makes a statement about the probability of
measurement outcomes. Therefore, what MWI has to
show for deriving Postulate 4 is unclear. By contrast,
the replacement of Postulate 4 by Postulate 5 makes
this clear since there is no ambiguity in Postulate 5
from the operational point of view.

8 The Principle of Typicality

As we saw in the preceding section, for deriving the
Born rule, Postulate 4, MWI seems to assume that our
world is “typical” or “random’ among many coexisting
worlds. However, the proposal of MWI by Everett was
nearly a decade earlier than the advent of algorithmic
randomness. Actually, Everett [5] proposed MWT in
1957 while the notion of Martin-Lof randomness was
introduced by Martin-Lof [6] in 1966. Thus, the as-
sumption of “typicality” by Everett in MWI was not
rigorous from a mathematical point of view.

The notion of “typicality” or “randomness” is just
the research object of algorithmic randomness. Based
on the notion of Martin-Lof P-randomness, we intro-
duce a postulate, called the principle of typicality as
follows. The principle of typicality is a refinement of
the assumption of “typicality” by Everett [5].

Postulate 9 (The principle of typicality). Our world is
typical. Namely, our world is Martin-Léof random with
respect to the measure on the set of all worlds, induced

by the probability measure representation defined as the
square of the norm of each state in the superposition of
the total system. [

In the case of the total system consisting of the qubit
systems and the apparatus which we considered in the
preceding section, the probability measure representa-
tion and the measure referred to in Postulate 9 are r
and Ap, respectively. Hence, Postulate 9 is precisely
Postulate 5 in this case. It is easy to see that in the
case where we treat only pure states, Postulate 9 is
precisely Postulate 5 in general. Thus, Postulate 5 is
derived from Postulate 9 together with Postulates 1, 2,
and 3.

We can derive Postulate 8 from Postulate 9 together
with Postulates 1, 2, and 3 in several scenarios of the
setting of measurements. We can do this by consider-
ing more complicated interaction between systems and
apparatus than one used for deriving Postulate 5 in
the above. Recall that mixed state on which measure-
ments are performed is an infinite sequence of pure
states, as defined in Definition 5. Hence, we have to
perform measurements on the mixed state while gener-
ating it. We have investigated several scenarios which
implement this setting. In all the scenarios which we
considered so far, Postulate 8 can be derived from Pos-
tulate 9 together with Postulates 1, 2, and 3.

9 Application to Quantum Cryptogra-
phy

In this section, we make an application of our frame-
work to the BB84 quantum key distribution protocol
[1] in order to demonstrate how properly our frame-
work works in a practical problem based on the princi-
ple of typicality. For the simplicity of the analysis, we
consider the following slight modification of the origi-
nal BB84 protocol [1]. Let [¥og) := |0), |¥10) = |1),
[Wo1) == (|0) +[1))/v2, and |[¥11) := (0) - [1))/v2.

Protocol 6 (The BB84 QKD protocol with slight mod-
ifications). Initially, set flag := 0. Repeat the following
procedure forever.

Step 1: Alice tosses two fair coins A and B to get
outcomes a and b in {0, 1}, respectively.

Step 2: Alice prepares |¥,;) and sends it to Bob.

Step 3: Bob tosses a fair coin C to get outcome ¢ €
{0,1}.

Step 4: Bob performs the measurement of the observ-
able |U1.)(T1.| over the state |¥4;) to obtain
outcome m € {0, 1}.

Step 5: Bob tosses a biased coin D to get outcome
d € {0,1}, where Pr{D =1} = p.

Step 6: If flag = 1, Alice and Bob discard all the bits
obtained so far.

Step 7: Alice and Bob announce b and c¢, respectively.



Step 8: If b # ¢, Alice and Bob discard a and m and
then go to Step 1.

Step 9: If d = 0, Alice and Bob keep a and m, respec-
tively, as a shared random bit, and then go to
Step 1.

Step 10: Alice and Bob announce a and m.
Step 11: If a # m, Alice and Bob set flag := 1.
Step 12: Alice and Bob discard a and m. O

In what follows, we investigate Protocol 6 based on
Postulate 9, without Postulate 4 and without even Pos-
tulate 5, from the point of view of our refinement of
MWI. To complete this, we have to implement ev-
erything in Steps 1-5 of Protocol 6 by unitary time-
evolution.

First, we consider the case where there is no eaves-
dropping. We describe the interaction between a sys-
tem and an apparatus as measurement process, as de-
scribed in (2). The interaction is divided into the fol-
lowing five unitary time-evolutions.

To realize the coin tossing in Step 1 of Protocol 6
we make use of measurement over two qubits system.
The measurement is described by the unitary time-
evolution Uy [ab)®|®Pit) = |ab)®|®;[ab]) (a,b € {0,1}),
where |ab) := |a) ® |b) is a state of the two qubits
system, and |®"%) and |®;[ab]) are states of an ap-
paratus. Prior to the measurement, the two qubits
system is prepared in the state |¥p1) ® |Pp1). The
preparation of the state |¥,;) by Alice in Step 2 is real-
ized by the unitary time-evolution Us|®1[ab]) ® [¥gg) =
|®1[ad]) @ [¥ap) (a,b € {0,1}). Then, similarly to Step
1, the coin tossing in Step 3 is described by the unitary
time-evolution Us|c)®|®Ri) = |c)@|P3]c]) (c € {0,1}).

The switching of the two types of measurements in
Step 4, depending on the outcome c, is realized by the
unitary time-evolution Uy |P3[c])®|0) = |P3[c])@V,|O).
Here, the unitary time-evolution V,|¥,.) ® |®Pit) =
[Poe) ® |Pyla]) (a,c € {0,1}) is applied to the compos-
ite system consisting of the qubit sent from Alice and
an apparatus, and describes the alternate measurement
process of the qubit sent from Alice, depending on the
outcome c. Note that the unitarity of Uy is confirmed
by the following theorem.

Theorem 7. Let Hq and Hs be finite-dimensional Hilbert

spaces. Let {|1),...,|N)} be an orthonormal basis of
Hi, and let Uy, ..., Uyn be arbitrary N unitary opera-
tors on Ha. Then U := |1)(1|@ Ui+ -+ |N)(N|®@Ux
is a unitary operator on Hi @ Ha, and U(|k) @ |¥)) =
|k) @ (Ug| W) for everyk =1,...,N and |¥) € Hy. O

Finally, the biased coin tossing in Step 5 is described
by the unitary time-evolution Us|d) ® |®Pi) = |d) @
|®5[d]) (d € {0,1}) similarly to Step 3, while a qubit
system is prepared in the state /I — p|0) + /p|1) in-
stead of |[¥g1) prior to the measurement.

The sequential application of Uy, ..., Us to the com-
posite system consisting of four qubits system and ap-
paratus results in the following single unitary time-
evolution U: (i) if b = ¢ then

Ulabed) @ |[oo) @ |1 = |abed) @ |Uyp) @ |®labead)),
and (ii) if b # b then

\%mbc@ % |Woe) ® |[abc0d))
(-p°
V2

Here, |abed) denotes the four qubits state |a) ®|b)®|c)®
|d>, ‘(I)init> denotes ‘(I)ilnit> ® |(I)i3nit> ® |(p£1nit> ® |q)%nit>’ and
|®[abemd]) denotes | D4 [ab]) @|Ps[c]) @|Pa[m]) @ |P5[d]).
Totally, prior to the application of U, the four qubits
system is prepared in the state

1
> —=Aglabed),
abede{0,1}4 \/g

where Ag = /1T —pand A; = /p.

Let Q be the alphabet {0,1}°, which is the set of
all possible records of the apparatus in a repeated once
of the procedure in Protocol 6. It follows from Postu-
late 9, the principle of typicality, that our world, i.e.,
the infinite sequence a € 2°° of records in the appara-
tus which is being generated by the infinite repetition of
the procedure in Protocol 6, is Martin-Lof P-random,
where P is a finite probability space on 2 such that (i)
in the case of b = ¢, P(abemd) = A%/8 if a = m and
P(abcmd) = 0 otherwise, and (ii) in the case of b # ¢,
P(abemd) = A2%/16.

Let 8 be an infinite sequence over {2 obtained from
« by eliminating all elements of the form abecmd with
b # ¢ occurring in «. Using Theorem 18 of Tadaki
[12] and Theorem 4 in this paper we can show the fol-
lowing: First, 8 consists only of elements of the form
abbad. This shows that Alice and Bob certainly share
an identical bit every time of the case of b = c. Let -y be
an infinite binary sequence obtained from [ by replac-
ing each element abbad in 8 by a. We then see that ~
is Martin-Lof random. This means that Alice and Bob
certainly share a “random” infinite binary sequence.

Next, we consider the case where there is an eaves-
dropping by Eve. We assume that Eve performs the
following eavesdropping between Step 2 and Step 3 of
Protocol 6.

Ulabed) @ [Woo) @ [B11Y) =

+

Step E1: Eve tosses a fair coin E to get outcome e €
{0,1}.

Step E2: Eve performs the measurement of the observ-
able |1, )(P1,.| over the state |¥,;) sent from
Alice to Bob, and obtains outcome f € {0,1}.

Steps E1 and E2 are the same as Steps 3 and 4 of
Protocol 6. Thus, it is easy to see that Eve performs
the following unitary time-evolution Ugye on the com-
posite system consisting of a two qubits system and an

|abed) & |U1.) ® |P[abeld)).



apparatus: Ugvele) ® |PF]) @ [Vap) ® |PFY) = le) @
|Pr1le]) @ Ve(|Wap) @ |PEIF)), where the unitary opera-
tor V, satisfies that V.|W,e) @|®0I) = [, ) 0[P gala)).
The vector |e) is a state of a qubit system which imple-
ments the tossing of a fair coin in Step E1, and |®2it)
and |Pg1le]) are states of an apparatus measuring the
qubit system. Prior to the measurement, the qubit sys-
tem is prepared in the state |[Wo;). The vectors |t
and |®goa]) are states of an apparatus measuring the
qubit system with state |®,;) sent from Alice to Bob
in Step E2.

The sequential application of Uy, Us, Ugye, Us, Uy, Us
to the composite system consisting of five qubits system
and apparatus results in a single unitary time-evolution
U which satisfies that: (i) If b = ¢ = e then

Ulabecd) @ |Woo) @ |@™1)
= |abecd) ® |Vyp) @ |Plabeacad));

(ii) If b = ¢ # e then
Ulabecd) @ [Woo) @ |D)
1
= §|abecd> ® |Toe) @ |Pabe0c0d])

1
+ §\abecd> ® |¥1.) @ |P[abelcld])

+ (*21 ) labecd) @ |Wo.) © |®labelcOd])

- (_21) |abecd) ® |V1.) @ |P[abelcld]).

Here, |abecd) denotes the five qubits state |a) @ |b) ®
le) @|c) @ |d), |©™F) denotes |2}"") @ |") @ |y) @

|PNit) | Pinit) | DIit) and |®[abe femd)) denotes | @1 [ab])®

|© 1 [e]) @@ 2 [ 1) ©[P3[c]) @ |Pa[m]) @ |Ds[d]). Totally,
prior to the application of U, the five qubits system is
prepared in the state

Z iAd |abecd),

abecde{0,1}°

where A’s are the same as before.

Let Qg be the alphabet {0,1}7, which is the set of all
possible records of the apparatus in a repeated once of
the procedure in Protocol 6 with the eavesdropping by
Eve. It follows from Postulate 9 that our world, i.e., the
infinite sequence ap € Q% of records in the apparatus
which is being generated by the infinite repetition of
the procedure in Protocol 6 with the eavesdropping by
Eve, is Martin-Lof Pg-random, where Pg is a finite
probability space on Qg such that (i) in the case of
b=c=e, Pplabefemd) = A2/16 if f =a & m =a
and Pg(abefemd) = 0 otherwise, and (ii) in the case
of b=c# e, Pg(abefemd) = A2/64.

Let Bg be an infinite sequence over i obtained from
ap by eliminating all elements of the form abefcmd
with b # ¢ or d = 0 occurring in ag. As in the case
of no eavesdropping, we can show the following: Sg
consists only of elements of the form abefbml. Let
vg be an infinite binary sequence obtained from Sg by

replacing each element abefbml in Bg by 0 if a = m
and by 1 otherwise. Then the infinite binary sequence
v is Martin-Lof random. This means the following:
If every time of the case of b = ¢ and d = 1, Alice
and Bob check whether a # m holds by announcing a
and m, they can find the eavesdropping by Eve with
“probability” 1/2.
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